LADOT’S ADAPTIVE TRAFFIC CONTROL SYSTEM
(ATCS)

Presentation at the TRB Workshop on Adaptive Traffic Signal Control Systems, Sponsored by Signal Systems Committee

January 7, 2001
GENERAL DESCRIPTION

- PC-based real-time adaptive traffic control system
- Developed by LADOT staff
- UTCS database and Operator Interface Language (OIL)
- Window NT with real-time extension
- Distributed client-server architecture
- Prototype system was operational in 1996. PC Window based system was completed in 1999.
- Currently 375 intersections on-line in three systems
WORKSTATION DISPLAY
DYNAMIC AREA MAP
GUI-Signal Timing Parameters
GUI-Adaptive Parameters

Kernel parameters

| VS | st | flag | pck flag | op | st | sect | dph | CLC | CIC | plan | fixed | cycle | local | cycle | mas cycle | mas timer | local timer | cur ofs | next ofs | CLC ofs | last local | gm entr | ph 1 split | ph 2 split | ph 3 split | ph 4 split | ph 5 split | ph 1 min | ph 2 min | ph 3 min | ph 4 min | ph 5 min |
|----|----|------|----------|----|----|------|-----|-----|-----|------|-------|-------|-------|-------|-----------|-----------|-------------|--------|----------|--------|-----------|--------|------------|------------|------------|------------|------------|-----------|-----------|-----------|
| 1 | 0 | 0 | 5 | 2 | 0 | 0 | 1 | 4 | 0 | 60 | 60 | 40 | 18 | 30 | 30 | 30 | 60 | 10 | 60 | 60 | 10 | 36 | 24 | 0 | 0 | 0 | 0 | 26 | 24 | 0 |
| 2 | 0 | 0 | 5 | 2 | 0 | 0 | 1 | 4 | 0 | 60 | 60 | 40 | 18 | 30 | 30 | 30 | 60 | 10 | 60 | 60 | 10 | 36 | 24 | 0 | 0 | 0 | 0 | 26 | 24 | 0 |
| 3 | 0 | 0 | 5 | 2 | 0 | 0 | 1 | 4 | 0 | 60 | 60 | 40 | 18 | 30 | 30 | 30 | 60 | 10 | 60 | 60 | 10 | 36 | 24 | 0 | 0 | 0 | 0 | 26 | 24 | 0 |
| 4 | 0 | 0 | 5 | 2 | 0 | 0 | 1 | 4 | 0 | 60 | 60 | 40 | 18 | 30 | 30 | 30 | 60 | 10 | 60 | 60 | 10 | 36 | 24 | 0 | 0 | 0 | 0 | 26 | 24 | 0 |
| 5 | 0 | 0 | 5 | 2 | 0 | 0 | 1 | 4 | 0 | 60 | 60 | 40 | 18 | 30 | 30 | 30 | 60 | 10 | 60 | 60 | 10 | 36 | 24 | 0 | 0 | 0 | 0 | 26 | 24 | 0 |
| 6 | 0 | 0 | 5 | 2 | 0 | 0 | 1 | 4 | 0 | 60 | 60 | 40 | 18 | 30 | 30 | 30 | 60 | 10 | 60 | 60 | 10 | 36 | 24 | 0 | 0 | 0 | 0 | 26 | 24 | 0 |
| 7 | 0 | 0 | 5 | 2 | 0 | 0 | 1 | 4 | 0 | 60 | 60 | 40 | 18 | 30 | 30 | 30 | 60 | 10 | 60 | 60 | 10 | 36 | 24 | 0 | 0 | 0 | 0 | 26 | 24 | 0 |
| 8 | 0 | 0 | 5 | 2 | 0 | 0 | 1 | 4 | 0 | 60 | 60 | 40 | 18 | 30 | 30 | 30 | 60 | 10 | 60 | 60 | 10 | 36 | 24 | 0 | 0 | 0 | 0 | 26 | 24 | 0 |

Section parameters

<table>
<thead>
<tr>
<th>sect</th>
<th>sect cycle</th>
<th>sect timer</th>
<th>next cycle</th>
<th>cycle ofs</th>
<th>cycle ofs</th>
<th>ctrl</th>
<th>past dmd3</th>
<th>past dmd2</th>
<th>past dmd1</th>
<th>past dmd0</th>
<th>dmd slope</th>
<th>predict</th>
<th>A1</th>
<th>A2</th>
<th>A3</th>
<th>A4</th>
<th>A5</th>
<th>B1</th>
<th>B2</th>
<th>SD</th>
<th>min cycle</th>
<th>max cycle</th>
</tr>
</thead>
<tbody>
<tr>
<td>30</td>
<td>85</td>
<td>31</td>
<td>85</td>
<td>0</td>
<td>1</td>
<td>86</td>
<td>85</td>
<td>82</td>
<td>78</td>
<td>-5</td>
<td>73</td>
<td>5.70</td>
<td>0.60</td>
<td>0.33</td>
<td>0.00</td>
<td>0.00</td>
<td>2.00</td>
<td>1.20</td>
<td>1.50</td>
<td>50</td>
<td>100</td>
<td></td>
</tr>
<tr>
<td>42</td>
<td>65</td>
<td>21</td>
<td>65</td>
<td>0</td>
<td>0</td>
<td>63</td>
<td>62</td>
<td>63</td>
<td>62</td>
<td>0</td>
<td>62</td>
<td>5.50</td>
<td>0.60</td>
<td>0.33</td>
<td>0.00</td>
<td>0.00</td>
<td>2.00</td>
<td>1.20</td>
<td>1.50</td>
<td>50</td>
<td>150</td>
<td></td>
</tr>
<tr>
<td>96</td>
<td>50</td>
<td>46</td>
<td>50</td>
<td>0</td>
<td>0</td>
<td>48</td>
<td>49</td>
<td>50</td>
<td>49</td>
<td>0</td>
<td>49</td>
<td>5.50</td>
<td>0.60</td>
<td>0.33</td>
<td>0.00</td>
<td>0.00</td>
<td>2.00</td>
<td>1.20</td>
<td>1.50</td>
<td>50</td>
<td>150</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>150</td>
<td>66</td>
<td>150</td>
<td>0</td>
<td>0</td>
<td>185</td>
<td>186</td>
<td>186</td>
<td>186</td>
<td>1</td>
<td>187</td>
<td>6.00</td>
<td>0.60</td>
<td>0.33</td>
<td>0.00</td>
<td>0.00</td>
<td>2.00</td>
<td>1.20</td>
<td>0.80</td>
<td>50</td>
<td>150</td>
<td></td>
</tr>
</tbody>
</table>

Link Statuses

<table>
<thead>
<tr>
<th>Link</th>
<th>CLG</th>
<th>Int Phases</th>
<th>Spd</th>
<th>Pos</th>
<th>Len</th>
<th>Phi</th>
<th>Prg</th>
<th>X</th>
<th>Vol</th>
<th>DCC</th>
<th>Pri</th>
<th>GCO</th>
<th>Ots</th>
<th>BdW</th>
<th>SDG</th>
<th>SOR</th>
<th>Spl</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>35</td>
<td>158</td>
<td>0</td>
<td>99</td>
<td>16</td>
<td>6</td>
<td>2</td>
<td>0</td>
<td>58</td>
<td>15</td>
<td>30</td>
<td>36</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>1</td>
<td>35</td>
<td>150</td>
<td>976</td>
<td>116</td>
<td>16</td>
<td>6</td>
<td>0</td>
<td>27</td>
<td>25</td>
<td>10</td>
<td>25</td>
<td>30</td>
<td>36</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>1</td>
<td>35</td>
<td>150</td>
<td>911</td>
<td>116</td>
<td>0</td>
<td>22</td>
<td>10</td>
<td>0</td>
<td>28</td>
<td>7</td>
<td>16</td>
<td>15</td>
<td>10</td>
<td>30</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>0</td>
<td>2</td>
<td>35</td>
<td>135</td>
<td>976</td>
<td>83</td>
<td>0</td>
<td>37</td>
<td>17</td>
<td>3</td>
<td>30</td>
<td>46</td>
<td>15</td>
<td>20</td>
<td>10</td>
<td>30</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>0</td>
<td>3</td>
<td>35</td>
<td>160</td>
<td>911</td>
<td>66</td>
<td>0</td>
<td>20</td>
<td>9</td>
<td>1</td>
<td>24</td>
<td>35</td>
<td>15</td>
<td>50</td>
<td>30</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>0</td>
<td>3</td>
<td>35</td>
<td>157</td>
<td>895</td>
<td>36</td>
<td>0</td>
<td>53</td>
<td>24</td>
<td>4</td>
<td>30</td>
<td>25</td>
<td>2</td>
<td>25</td>
<td>50</td>
<td>30</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>0</td>
<td>4</td>
<td>35</td>
<td>233</td>
<td>872</td>
<td>58</td>
<td>0</td>
<td>103</td>
<td>17</td>
<td>12</td>
<td>44</td>
<td>80</td>
<td>12</td>
<td>55</td>
<td>37</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
CONTROL STRATEGIES

- Calculations of Cycle Length, Splits and Offset are three separate but dependent functions
- Volume and occupancy data are collected every second, but used every cycle
- Apply heuristic formulas based on extensive operational experience
- Use critical link/intersection approach
- Include a traffic projection module
- Parameters can be easily adjusted to adapt to different street configurations
- Transit priority system
SYSTEM ARCHITECTURE

- Centralized area computers (PC Server) communicate to local controllers.
- Multi-port serial cards connect to communication lines.
- GUI Client running on area computers and workstations.
- Main Data Server provides central traffic data base and coordinates area computers.
COMMUNICATIONS SYSTEM

- Dedicated communication path between host and local controllers
- Time division multiplexing
- Local controllers polled once per second at 1200 bps
- Four intersections per communication line.
- Multiple communication protocols
- Download/Upload to local controllers
CENTRAL HARDWARE REQUIREMENTS

- Rack mounted server with a backup PC.
 - 350 MHz PC with 192 MB RAM
- Workstation with two 21-inch monitors.
- Multi-port PCI serial cards.
- Ethernet network.
WHY ADAPTIVE?

- Needs to update timing plans
- Basic 3 timing plans (AM, MD and PM) are not sufficient
- Incident management
- Special events
- Already has extensive detection system
- Land development initiatives
A total of 375 signals in three separate systems:
- Mar Vista area: 99 signals
- South Park area: 109 signals
- Boyle Heights area: 167 signals

All future ATSAC systems will be ATCS

Plan to convert existing UTCS into ATCS systems
HOW MANY SIGNAL TIMING ENGINEERS?

- ATSAC Implementation Group
 - 7 Signal Timing Engineers
- ATSAC Operation Center
 - 6 Traffic Engineers
- ATCS Research and Development
 - 2 Communications Specialists
 - 2 Software Engineers
 - 2 System Engineers
LEARNING CURVE

- Central database:
 - Signal timing: mostly automated
 - Link/Detector: Tedious and error prone, needs to be automated

- Detector diagnostics
 - Initial setup: requires a stringent QC process
 - Repair and maintenance: a dedicated loop crew is needed
Control strategies
- Control parameters: Moderately difficult
- Adaptive functions: Time consuming

Signal timing charts: no more complicated than before

System support and upgrade: need PC-Window based system specialists
CHALLENGES

- Signal grouping
 - Currently pre-determined by engineers
 - Dynamic grouping based on traffic conditions is being developed

- Network optimization

- Over-saturated conditions
SUCCESS STORIES

- Improve corridor operations
 - Reduce delays by up to 7% over existing UTCS system
 - Increase total throughput
- Respond to special events more effectively
 - Flush out Lakers traffic in less than 30 minutes
- Handle minor to moderate incidents well
FUTURE ENHANCEMENTS

- Refine network optimization logic
- Develop advanced incident detection system
- Integrate CMS and CCTV control functions
- Combine newly developed transit priority system
CONTACT PERSONS

Verej Janoyan, LADOT
(213) 580-5359
e-mail:vjanoyan@dot.lacity.org

Kang Hu, LADOT
(213) 485-8523
e-mail:khu@dot.lacity.org