Aerial Data Collection for Intersection Evaluation

Alejandro Angel and Mark Hickman
Department of Civil Engineering and Engineering Mechanics
and ATLAS Center
University of Arizona

Workshop 129
Transportation Research Board
January 2006
Outline

• Framework
• Data Collection
• Applications
 • Intersection LOS
 • Signal Operations
 • Queue Lengths
 • Vehicle Trajectories
Framework

Equipment → Processing → Data Gathering → Decision System

Feedback & decisions

Sensor media

Transportation Flows
Framework

Media: Video and camera images

Research effort: Use video and camera images, image processing and algorithms to measure traffic variables

Major characteristic: We are no longer restricted to point detection, and we can use a spatial detection paradigm.

Goal: Improve efficiency of transportation system by integrating remotely sensed data with ground-collected data
Data Collection
Intersection LOS Analysis

Measure traffic parameters directly from video and still images

- Queue lengths
- Saturation flow rate
- Arrival type / Arrivals during green (with signal data)
- Right turns on red

New technologies facilitate data collection and reduction

- Ability to see all movements simultaneously
- Advanced image processing tools available
Intersection LOS Methodology

- Based on ITE and HCM field data procedures

1. DETERMINE
 - Intersection geometry
 - Lane groups

2. COUNT STOPPED or QUEUED VEHICLES

3. COUNT DEPARTING VEHICLES

4. ESTIMATE STOPPED or QUEUING DELAY

5. ESTIMATE CONTROL DELAY

6. ESTABLISH LOS
Intersection LOS Methodology

- Aerial video allows more frequent sampling compared with traditional methods
- Manual or automated data reduction possible
Intersection LOS Methodology

- Compute stopped or queuing delay
 \[d_i = A \times \frac{I \times \sum_{i=1}^{n} V_{S_i}}{V_i} \]
- Control delay = f(stopped or queuing delay)
 Can use HCM or ITE procedure
- Determine LOS

<table>
<thead>
<tr>
<th>LOS</th>
<th>Control delay (s/veh)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>\leq 10</td>
</tr>
<tr>
<td>B</td>
<td>>10 – 20</td>
</tr>
<tr>
<td>C</td>
<td>>20 – 35</td>
</tr>
<tr>
<td>D</td>
<td>>35 – 55</td>
</tr>
<tr>
<td>E</td>
<td>>55 – 80</td>
</tr>
<tr>
<td>F</td>
<td>>80</td>
</tr>
</tbody>
</table>

Source: HCM 2000
Intersection LOS Experiments

Objective: Apply the proposed methodology and compare the results with the standard HCM analysis
Intersection LOS Experiments

• Three helicopter flights (AM peak, mid-day and PM peak)
• Sites: Two intersections on Speedway Boulevard, Tucson
• 3 minute study period (2 cycles)
 • Assumed to be representative of peak period
• Image scale (resolution): 1 ft/pixel
• 10 sec vehicle counting interval (with still camera)
 • Within range recommended by ITE and HCM
 • Preliminary tests show accuracy is not compromised
Intersection LOS Experiments

• Inputs to HCM analysis methodology
 • 15-min analysis period
 • Volumes: Observed volumes and RTOR (extrapolated)
 • From City of Tucson: Arrival type, saturation flow rate, etc.
 • Signal timing observed in the field
Results

Euclid Ave and Speedway Blvd. PM Peak (5:30 pm)

<table>
<thead>
<tr>
<th>Approach</th>
<th>EB</th>
<th>WB</th>
<th>NB</th>
<th>SB</th>
</tr>
</thead>
<tbody>
<tr>
<td>Movement</td>
<td>L</td>
<td>T-R</td>
<td>L</td>
<td>T</td>
</tr>
<tr>
<td>Number of lanes</td>
<td>1</td>
<td>3</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>Control delay (s/veh)</td>
<td>35.1</td>
<td>40.8</td>
<td>63.1</td>
<td>50.9</td>
</tr>
<tr>
<td>LOS</td>
<td>D</td>
<td>D</td>
<td>D</td>
<td>D</td>
</tr>
<tr>
<td>Control delay (s/veh)</td>
<td>40.1</td>
<td>45.5</td>
<td>66.0</td>
<td>51.4</td>
</tr>
<tr>
<td>LOS</td>
<td>D</td>
<td>D</td>
<td>E</td>
<td>D</td>
</tr>
</tbody>
</table>

HCM ANALYSIS METHODOLOGY

Control delay (s/veh)	40.9	27.2	50.9	133.8	24.3	25.9	75.4	39.5	30.5
LOS	D	C	D	C	F	C	E	D	C
Control delay (s/veh)	28.8	110.4	68.5	33.2					
LOS	C	F	E	C					
Control delay (s/veh)		69.7							
LOS	E								
Results

• Left turns:
 • Delay from HCM is 23% lower than from aerial imagery
 • Main discrepancy: Number of left turns executed in permitted phase (actual gaps < calculated gaps)

• Thru lanes (excludes thru and right shared lane groups):
 • In the average, delay was very similar
 • In some cases HCM overestimated delay
 • Reason: Observed saturation flow rate (2150 veh/hr) greater than assumed rate; incremental delay was overpredicted
Results

• Right turns:
 • On average, observed delay was 15 sec less than from HCM
 • Cause: Aerial methodology measures delay for all right turning vehicles; HCM excludes RTOR
 • In HCM the capacity of lane group is limited to the protected phase

• Overall intersection:
 • Observed delay was 25% lower than estimated with the HCM
Signal Operations: Seattle RHODES Test
with M. Hallenbeck, F. Ladron
Signal Operations: Seattle RHODES Test

• Data Collection
 • Signal settings
 • Detector data
 • Aerial video and still images

• Analysis and Validation
 • Queue lengths
 • Delay estimates
 • Turning movement counts
Signal Operations: Seattle RHODES Test

Results: Aerial imagery comparison with detector data

• Higher saturation flow rates observed, compared with those assumed for signal settings

• Discrepancies in queue lengths due to detector locations, assumed saturation flow rates

• Turning movement counts are consistent
Image Processing for Queue Length Analysis
with A. Agrawal, R. Mothkuri

Goal: automate data reduction for queue lengths
Queue Length Methodology

1. Cropped Image
2. Image Segmentation
3. Median Filtering
4. Connected Component Analysis
5. Shape Analysis
6. Queue Length Estimation

- Queue Polygon
- Counting Vehicles in Queue
- Vehicles in Different Lanes
Image Analysis for Queue Lengths
Queue Length Estimates

Issues affecting accuracy:
- Resolution and scale of the image
- Accuracy of the cropping of the image
- Proportion of dark vehicles in the queue
- Angle of the road to the edge of the image
Vehicle Trajectories
with A. Shastry, K. Kadam, R. Schowengerdt, and P. Mirchandani

Idea: Generate individual vehicle trajectories

Method: Automated registration of frames, and tracking of vehicles in the image

Result: smooth point of view in imagery, and individual vehicle tracking
Framework

Data Collection

Video Image Processing

Trajectory Processing

Application Post-Processing

Raw Video

Vehicle in Image

Vehicle Position and Time

Registration

Vehicle identification

Vehicle tracking

Scaling

Road mask

THE UNIVERSITY OF ARIZONA
TUCSON ARIZONA
Intersection Video

Unregistered Video

Registered Video with Tracking
Conclusions

• Airborne imagery can be used for intersection analysis
 • View all approaches simultaneously
 • Allows collection of a wide variety of performance measures
 • Can be used to validate signal operations

• Automated queue length detection is possible

• Advanced techniques for vehicle tracking are available