Simulation Performance Measures in System Design

Or: How We Have Used Simulation in Signal Timing and Other Design Projects

Erica Wygonik & Robert Chamberlin, PE/PTOE
Resource Systems Group
Vermont
Overview

- Example Projects Using Microsimulation
- What Approaches Lead to a Good Design?
- What Measures Suggest a Good Design?
- Use of Microsimulation in Design
Example Projects Utilizing Simulation

- **Signal Timing/Coordination**
 - Susie Wilson Road, Essex, VT
 - US 2/Main Street; Burlington, VT
 - Memorial Drive; Montpelier, VT
 - US 7; Colchester, VT
 - Route 120; Lebanon, NH
 - Route 12A; Lebanon, NH (current)

- **Network Design**
 - Downtown Circulator; Winooski, VT (2001-2004)
 - CBD Circulation; Middlebury, VT
Visionary client interested in establishing new urbanist development pattern

Intersection of 2 major commuting routes controlled by 3 traffic signals (AADT ~36,000)

Work with client to develop alternative circulation designs

- Traffic signals seen as problematic
- Desire motivated search for alternative intersection control methods
- Circulator concept emerged as favorite
- Developed microsimulation model to test circulator concept
Simulate Existing
Approaches to Meet the Objectives
Downtown Circulator – Winooski, Vermont
Approaches to Meet the Objectives
Downtown Circulator – Winooski, Vermont

Simulate Circulator
Approaches to Meet the Objectives
Downtown Circulator – Winooski, Vermont

Design Circulator
What Measures Suggest a Good Design?

- Does the design work?
- Two steps:
 - Visual inspection of the simulation--
 - Any adverse queuing?
 - Any extreme delays?
 - Use of standard capacity analysis tools
 - At any node in the design can the merging, weaving, or conflicting flow be handled by the geometry?
Finished Product
Interstate Access and Arterial Coordination: NH 12 A – Lebanon, NH

- NH 12A
 - Retail corridor served by I89
 - Limited routing alternatives
 - Overcapacity conditions

- NHDOT Project with 2 Objectives:
 - Improve I89 Ramp Functioning & Safety
 - Improve Overall Corridor Mobility with Coordinated Timing Plan
Analytical Approaches
NH 12 A – Lebanon, NH

◆ Obtain complete count set
 ◆ Recent counts conducted on same day
 ◆ Do counts = demand?

◆ Adjustments
 ◆ Look for peak of corridor, not just local intersection
 ◆ Average AND peak conditions are considered

◆ Develop Synchro model
What Measures Suggest a Good Design?

- For Coordinated Timing Plans:
 - Synchro
 - Develop preliminary timing plans optimized in Synchro
 - Test 2-4 reasonable cycle lengths
 - Focus on critical intersections or movements
 - SimTraffic—Select Best Timing Plan Based on:
 - Multiple runs (5-10)
 - Average and maximum queues
 - Calculated delay for critical movements and system-wide
 - Compare arterial delay and speed
 - Microsimulate resulting plan for visual check.
 - Install plans and optimize offsets in field.
Use of Microsimulation in Design

- 5-10 years ago:
 - relied on heavily for refinement
 - computer analysis time consumed as much as 70% of effort
- Now:
 - limit usage to special cases
 - useful to evaluate future conditions
 - Focus on specific output
 - Spend 50-60% of project time in field.
- Optimized results of models should be over-ridden by engineering judgment
- Models are used to inform judgment