Warning

• This presentation contains graphic images depicting serious violations to the co-ordination of traffic signals and may not be suitable for some members of the audience
City of Toronto

- Largest Canadian City
- 2.5 million people
- 632km² (244mi²)
Transit in Toronto

- GO Transit
 - Interregional
 - Heavy Rail
 - Bus

- TTC
 - Local (24-hour)
 - Subway (3 lines)
 - ICTS (1 line)
 - Streetcar (11 routes)
 - Bus (138 routes)
 - Paratransit
 - 405 million annual trips
In a nut shell

- Over 14 years signal priority experience
- Over 155 equipped intersections on streetcar routes
- Over 115 equipped intersections on bus routes
- Aggressive expansion plan
The Beginning

- 6-intersection demonstration on a streetcar route in 1990
 - track switching equipment used for detection
 - controller pre-empt functions
 - simple algorithms
Study Conclusions

• 5 to 9 seconds of two-way delay reduction at each intersection
 – Up to 20% transit travel time reductions
• Other traffic not significantly affected
• Detection system proved effective
Study Recommendations

• Priority be considered for application throughout the streetcar network
• Implement one route at a time
• Investigate cheaper streetcar detection system
• Improve priority algorithm
Streetcar Detection System

• Use onboard RF track switching transmitters
• RFP for wayside check-in/check-out receiver
Detection System

- Loop based vehicle to wayside communication
- Overhead wire or spread spectrum radio wayside to controller communication
Algorithm Enhancements

- Detect different directions separately
- Design for 14-second extension
- Allow 30-second maximum extension
- Side-street truncation to minimum green
- Transit callable/extendable phases
- Transit only phases
- Use offset recovery routine for additional priority or for cross street compensation
Typical Signal Priority Algorithm

- Display LTGA up to 16 seconds
- LTGA Decision Point
- Extension Decision Point
- Optional Offset Recovery Interval
- Offset Recovery Interval
- Extend Green up to 30 seconds
- Start FDW
- Truncation Decision Point
- Truncate to Minimum Side Street Green
- Start SS FDW
Controller Functions for Priority

- Pre-empt functions used for extensions and truncations
- Normal controller functions used for transit callable and transit only phases
- Offset recovery used to provide additional passive priority
Impacts on “Normal” Signal Operation

• Streetcars have considerable control of the signal operation

• Co-ordination - not an issue on most streetcar routes
 – all traffic on approach must stop for passenger boarding/alighting
TTC/City Signal Priority Negotiations
Why So Much Control?

• Transit - Very important component of Toronto’s transportation system

• Priority equipped streetcar routes
 – provide very frequent service (2 to 5-minute peak period frequencies)
 – carry large number of passengers (31,000 to 52,000 passengers a day)
 – high transit modal split
Business Case for Signal Priority
Payback less than 5 years

- $15,000 to $25,000 per intersection
 - 12 to 16 seconds saved
- $500,000 to $850,000 per route
 - 7 to 11 minutes saved
- 1 to 2 fewer streetcars required
 - $200,000 plus annual operating cost savings
- Faster transit service
Streetcar Priority Applications

- Over 155 intersections equipped
- 7 streetcar routes
- 10 fewer streetcars
- Over $1 million a year in operating costs saved
Expansion to Buses

• 10-intersection demonstration in 1997
 – enhanced algorithms
 – infrared based vehicle to wayside communication
 – spread spectrum radio wayside to controller communication
Bus Demonstration Conclusions

• Transit delay decreased up to 46%
• Auto delay decreased marginally
• Cross street traffic not significantly affected
• Bus detection system reliability problems
 – reflection of signal
 – missed detection (alignment problems)
Bus Demonstration Study Recommendations

• Implement priority on 29 Dufferin bus route to confirm benefits
• Use loop based bus detection
 – less expensive
 – equip bus division with RF transmitters
• Develop long term expansion plan
 – identify and prioritize candidate routes
29 Dufferin Installation (1998)

- 33 intersections equipped
- Benefits confirmed
- 2 buses saved
- $235,000 operating costs saved annually
- Other traffic not significantly affected
Impacts to “Normal” Signal Operation

- Control of traffic signals same as streetcars
- Impacts on signal coordination raised as an issue
 - Discussions on the effectiveness of coordination
Perspectives on Co-ordination

• Signal co-ordination is an important tool in reducing signal delay and optimising road operations

• Signal co-ordination is an outdated tool with few applications in today’s environment
TTC Perspective on Co-ordination

• Effective in minimising vehicular delays
 – One way streets
 – Arterial roads with highly tidal flows

• Effective in minimising overall person delays in very limited circumstances
 – only if transit modal split is low
Toronto Environment

• Very few one-way arterial roads
• Opposing Traffic flows are equalising
• High transit usage
 – few vehicles carrying large numbers of passengers
 – different travel time characteristics from autos
Toronto’s Official Plan

- 540,000 new residents
- 540,000 new jobs
- Additional travel demand focused on transit
 - new road capacity is prohibitively expensive
 - community opposition to new roads
 - existing infrastructure utilised more efficiently
 - more transit signal priority
 - more dedicated transit lanes
Bus Priority Applications (to date)

- Over 115 intersections equipped
- 3 bus routes
 - 1 route reduced running time and 2 fewer buses
 - one route same or more running time
 - one route not yet activated
 - Differences on transit operation philosophies within TTC
 - Program suspended for 2 years
Conflicting Goals

• New route management strategy
 – enough running time to complete every trip
 – all running time should be drive time (no recovery time)

• Buses without/broken transmitters assigned to priority equipped routes
 – 20% of buses not equipped, 10% broken
 – transmitter repair a low priority
What’s next?

• Continuing to equip buses with transmitters
• Operations Department is reviewing the route management strategy
• Equipment staff have been asked to ensure transmitters working
• Restart program in 2004 (1 route a year)
• Expand program 50% starting in 2005
The TTC's Signal Priority Program
Longer Term Objectives

- Test new algorithm for major intersections
- Migrate to new traffic signal control system
- Test transit signal priority within SCOOT
- Provide priority only to late vehicles
 - during periods of less frequent service
 - AVLC system accuracy improved
Transit Goals

• Maximise transit benefits of signal priority opportunities
 – improve service
 – reduce operating costs
 – improve competitiveness of transit
 – encourage more transit use
 – maximise person carrying capacity of the road network
Operating Challenges

• Wise and effective use of the power to manipulate signal operation
 – No killing time in detection zones
 – No operator change over in detection zones
Operating Challenges

• Optimize transit operations to maximize signal priority benefits
 – reduce service frequency (larger vehicles or Multiple Unit operation)
 – reduce passenger service delays (Proof of Payment)